-r^2-2+4r^2+6r^2-9+9r^2+6r+4r^2-6r=0

Simple and best practice solution for -r^2-2+4r^2+6r^2-9+9r^2+6r+4r^2-6r=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -r^2-2+4r^2+6r^2-9+9r^2+6r+4r^2-6r=0 equation:



-r^2-2+4r^2+6r^2-9+9r^2+6r+4r^2-6r=0
We add all the numbers together, and all the variables
22r^2-11=0
a = 22; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·22·(-11)
Δ = 968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{968}=\sqrt{484*2}=\sqrt{484}*\sqrt{2}=22\sqrt{2}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{2}}{2*22}=\frac{0-22\sqrt{2}}{44} =-\frac{22\sqrt{2}}{44} =-\frac{\sqrt{2}}{2} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{2}}{2*22}=\frac{0+22\sqrt{2}}{44} =\frac{22\sqrt{2}}{44} =\frac{\sqrt{2}}{2} $

See similar equations:

| -7+3=-3x+7 | | -14y=-199 | | 2y-1/3=-1/3 | | -x+6=x+20 | | 6x-13=3x+18 | | 4x2−41x+45=0 | | 9x/6-12x=10 | | (7x/3)+3=9x/5 | | 5x-24=32 | | x^2+4x-496=0 | | 5x-10=5x+20, | | X+5-4x/3=17/5-5x/2 | | 3(8x-5)=5(3x-6)=-4 | | 2^x=(-1) | | (2x+6)/2–x=3 | | (2^x)=-1 | | 8x-7=5x-9 | | 12t−11=4t+5 | | Ex12=30.00 | | x+12+x+12+2=20 | | d+$5.60=20.00 | | 2x+17+8+2=x+2 | | 8x-9=11+11x | | (2x-3)=135=45 | | 0.20x=4 | | 3+3x+22=x+17 | | X+x+2+x+4+x+6+x+8/5=11 | | 5x-20/5=11 | | .7^x×3^x×2^x=1764 | | -12x/15=6 | | y2(8-2y)=−2 | | y2(8-2y)=−2 |

Equations solver categories